Skip to content

Language Agent

Run a LanguageAgent with memory, optional remote acting, and optional automatic dataset creation capabilities.

While it is always recommended to explicitly define your observation and action spaces, which can be set with a gym.Space object or any python object using the Sample class (see examples/using_sample.py for a tutorial), you can have the recorder infer the spaces by setting recorder="default" for automatic dataset recording.

Examples:

>>> agent = LanguageAgent(context=SYSTEM_PROMPT, model_src=backend, recorder="default")
>>> agent.act_and_record("pick up the fork", image)

Alternatively, you can define the recorder separately to record the space you want. For example, to record the dataset with the image and instruction observation and AnswerAndActionsList as action.

Examples:

>>> observation_space = spaces.Dict({"image": Image(size=(224, 224)).space(), "instruction": spaces.Text(1000)})
>>> action_space = AnswerAndActionsList(actions=[HandControl()] * 6).space()
>>> recorder = Recorder(
...     'example_recorder',
...     out_dir='saved_datasets',
...     observation_space=observation_space,
...     action_space=action_space

To record the dataset, you can use the record method of the recorder object.

Examples:

>>> recorder.record(
...     observation={
...         "image": image,
...         "instruction": instruction,
...     },
...     action=answer_actions,
... )

LanguageAgent

Bases: Agent

An agent that can interact with users using natural language.

This class extends the functionality of a base Agent to handle natural language interactions. It manages memory, dataset-recording, and asynchronous remote inference, supporting multiple platforms including OpenAI, Anthropic, and Gradio.

Attributes:

Name Type Description
reminders List[Reminder]

A list of reminders that prompt the agent every n messages.

context List[Message]

The current context of the conversation.

Examples:

Basic usage with OpenAI: >>> cognitive_agent = LanguageAgent(api_key="...", model_src="openai", recorder="default") >>> cognitive_agent.act("your instruction", image)

Automatically act and record to dataset: >>> cognitive_agent.act_and_record("your instruction", image)

Stream the response: >>> for chunk in cognitive_agent.act_and_stream("your instruction", image): ... print(chunk)

To use vLLM:

agent = LanguageAgent(
    context=context,
    model_src="openai",
    model_kwargs={"api_key": "EMPTY", "base_url": "http://1.2.3.4:1234/v1"},
)
response = agent.act("Hello, how are you?", model="mistralai/Mistral-7B-Instruct-v0.3")

To use ollama:

agent = LanguageAgent(
    context="You are a robot agent.",
    model_src="ollama",
    model_kwargs={"endpoint": "http://localhost:11434/api/chat"},
)
response = agent.act("Hello, how are you?", model="llama3.1")

Source code in mbodied/agents/language/language_agent.py
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
class LanguageAgent(Agent):
    """An agent that can interact with users using natural language.

    This class extends the functionality of a base Agent to handle natural language interactions. It manages memory, dataset-recording, and asynchronous remote inference, supporting multiple platforms including OpenAI, Anthropic, and Gradio.

    Attributes:
        reminders (List[Reminder]): A list of reminders that prompt the agent every n messages.
        context (List[Message]): The current context of the conversation.
        Inherits all attributes from the parent class `Agent`.

    Examples:
        Basic usage with OpenAI:
            >>> cognitive_agent = LanguageAgent(api_key="...", model_src="openai", recorder="default")
            >>> cognitive_agent.act("your instruction", image)

        Automatically act and record to dataset:
            >>> cognitive_agent.act_and_record("your instruction", image)

        Stream the response:
            >>> for chunk in cognitive_agent.act_and_stream("your instruction", image):
            ...     print(chunk)

    To use vLLM:
    ```python
    agent = LanguageAgent(
        context=context,
        model_src="openai",
        model_kwargs={"api_key": "EMPTY", "base_url": "http://1.2.3.4:1234/v1"},
    )
    response = agent.act("Hello, how are you?", model="mistralai/Mistral-7B-Instruct-v0.3")
    ```

    To use ollama:
    ```python
    agent = LanguageAgent(
        context="You are a robot agent.",
        model_src="ollama",
        model_kwargs={"endpoint": "http://localhost:11434/api/chat"},
    )
    response = agent.act("Hello, how are you?", model="llama3.1")
    ```
    """

    _art_printed = False

    def __init__(
        self,
        model_src: Literal["openai", "anthropic", "gradio", "ollama", "http"]
        | AnyUrl
        | FilePath
        | DirectoryPath
        | NewPath = "openai",
        context: list | Image | str | Message = None,
        api_key: str | None = os.getenv("OPENAI_API_KEY"),
        model_kwargs: dict = None,
        recorder: Literal["default", "omit"] | str = "omit",
        recorder_kwargs: dict = None,
    ) -> None:
        """Agent with memory,  asynchronous remote acting, and automatic dataset recording.

         Additionally supports asynchronous remote inference,
            supporting multiple platforms including OpenAI, Anthropic, vLLM, Gradio, and Ollama.

        Args:
            model_src: The source of the model to use for inference. It can be one of the following:
                - "openai": Use the OpenAI backend (or vLLM).
                - "anthropic": Use the Anthropic backend.
                - "gradio": Use the Gradio backend.
                - "ollama": Use the Ollama backend.
                - "http": Use a custom HTTP API backend.
                - AnyUrl: A URL pointing to the model source.
                - FilePath: A local path to the model's weights.
                - DirectoryPath: A local directory containing the model's weights.
                - NewPath: A new path object representing the model source.
            context (Union[list, Image, str, Message], optional): The starting context to use for the conversation.
                    It can be a list of messages, an image, a string, or a message.
                    If a string is provided, it will be interpreted as a user message. Defaults to None.
            api_key (str, optional): The API key to use for the remote actor (if applicable).
                 Defaults to the value of the OPENAI_API_KEY environment variable.
            model_kwargs (dict, optional): Additional keyword arguments to pass to the model source. Can be overidden at act time.
                See the documentation of the specific backend for more details. Defaults to None.
            recorder (Union[str, Literal["default", "omit"]], optional):
                The recorder configuration or name or action. Defaults to "omit".
            recorder_kwargs (dict, optional): Additional keyword arguments to pass to the recorder. Defaults to None.
        """
        if not LanguageAgent._art_printed:
            print("Welcome to")  # noqa: T201
            print(text2art("mbodi"))  # noqa: T201
            print("A platform for intelligent embodied agents.\n\n")  # noqa: T201
            LanguageAgent._art_printed = True
        self.reminders: List[Reminder] = []
        print(f"Initializing language agent for robot using : {model_src}")  # noqa: T201

        super().__init__(
            recorder=recorder,
            recorder_kwargs=recorder_kwargs,
            model_src=model_src,
            model_kwargs=model_kwargs,
            api_key=api_key,
        )

        self.context = make_context_list(context)

    def forget_last(self) -> Message:
        """Forget the last message in the context."""
        try:
            return self.context.pop(-1)
        except IndexError:
            logging.warning("No message to forget in the context")

    def forget_after(self, first_n: int) -> None:
        """Forget after the first n messages in the context.

        Args:
            first_n: The number of messages to keep.
        """
        self.context = self.context[:first_n]

    def forget(self, everything=False, last_n: int = -1) -> List[Message]:
        """Forget the last n messages in the context.

        Args:
            everything: Whether to forget everything.
            last_n: The number of messages to forget.
        """
        if everything:
            context = self.context
            self.context = []
            return context
        forgotten = []
        for _ in range(last_n):
            last = self.forget_last()
            if last:
                forgotten.append(last)
        return forgotten

    def history(self) -> List[Message]:
        """Return the conversation history."""
        return self.context

    def remind_every(self, prompt: str | Image | Message, n: int) -> None:
        """Remind the agent of the prompt every n messages.

        Args:
            prompt: The prompt to remind the agent of.
            n: The frequency of the reminder.
        """
        message = Message([prompt]) if not isinstance(prompt, Message) else prompt
        self.reminders.append(Reminder(message, n))

    def _check_for_reminders(self) -> None:
        """Check if there are any reminders to show."""
        for reminder, n in self.reminders:
            if len(self.context) % n == 0:
                self.context.append(reminder)

    def act_and_parse(
        self,
        instruction: str,
        image: Image = None,
        parse_target: type[Sample] = Sample,
        context: list | str | Image | Message = None,
        model=None,
        max_retries: int = 1,
        record: bool = False,
        **kwargs,
    ) -> Sample:
        """Responds to the given instruction, image, and context and parses the response into a Sample object.

        Args:
            instruction: The instruction to be processed.
            image: The image to be processed.
            parse_target: The target type to parse the response into.
            context: Additonal context to include in the response. If context is a list of messages, it will be interpreted
                as new memory.
            model: The model to use for the response.
            max_retries: The maximum number of retries to parse the response.
            record: Whether to record the interaction for training.
            **kwargs: Additional keyword arguments.
        """
        original_instruction = instruction
        kwargs = {**kwargs, "model": model}
        model = kwargs.pop("model", None) or self.actor.DEFAULT_MODEL
        for attempt in range(max_retries + 1):
            if record:
                response = self.act_and_record(instruction, image, context, model=model, **kwargs)
            else:
                response = self.act(instruction, image, context, model=model, **kwargs)
            response = response[response.find("{") : response.rfind("}") + 1]
            try:
                return parse_target.model_validate_json(response)
            except Exception as e:
                if attempt == max_retries:
                    raise ValueError(f"Failed to parse response after {max_retries + 1} attempts") from e
                error = f"Error parsing response: {e}"
                instruction = original_instruction + f". Avoid the following error: {error}"
                self.forget(last_n=2)
                logging.warning(f"\nReceived response: {response}.\n Retrying with error message: {instruction}")
        raise ValueError(f"Failed to parse response after {max_retries + 1} attempts")

    async def async_act_and_parse(
        self,
        instruction: str,
        image: Image = None,
        parse_target: Sample = Sample,
        context: list | str | Image | Message = None,
        model=None,
        max_retries: int = 1,
        **kwargs,
    ) -> Sample:
        """Responds to the given instruction, image, and context asynchronously and parses the response into a Sample object."""
        return await asyncio.to_thread(
            self.act_and_parse,
            instruction,
            image,
            parse_target,
            context,
            model=model,
            max_retries=max_retries,
            **kwargs,
        )

    def prepare_inputs(
        self, instruction: str, image: Image = None, context: list | str | Image | Message = None
    ) -> tuple[Message, list[Message]]:
        """Helper method to prepare the inputs for the agent.

        Args:
            instruction: The instruction to be processed.
            image: The image to be processed.
            context: Additonal context to include in the response. If context is a list of messages, it will be interpreted
                as new memory.
        """
        self._check_for_reminders()
        memory = self.context
        if context and all(isinstance(c, Message) for c in context):
            memory += context
            context = []

        # Prepare the inputs
        inputs = [instruction]
        if image is not None:
            inputs.append(image)
        if context:
            inputs.extend(context if isinstance(context, list) else [context])
        message = Message(role="user", content=inputs)

        return message, memory

    def postprocess_response(self, response: str, message: Message, memory: list[Message], **kwargs) -> str:
        """Postprocess the response."""
        self.context.append(message)
        self.context.append(Message(role="assistant", content=response))
        return response

    def act(
        self,
        instruction: str,
        image: Image = None,
        context: list | str | Image | Message = None,
        model=None,
        **kwargs,
    ) -> str:
        """Responds to the given instruction, image, and context.

        Uses the given instruction and image to perform an action.

        Args:
            instruction: The instruction to be processed.
            image: The image to be processed.
            context: Additonal context to include in the response. If context is a list of messages, it will be interpreted
                as new memory.
            model: The model to use for the response.
            **kwargs: Additional keyword arguments.

        Returns:
            str: The response to the instruction.

        Examples:
            >>> agent.act("Hello, world!", Image("scene.jpeg"))
            "Hello! What can I do for you today?"
            >>> agent.act("Return a plan to pickup the object as a python list.", Image("scene.jpeg"))
            "['Move left arm to the object', 'Move right arm to the object']"
        """
        message, memory = self.prepare_inputs(instruction, image, context)
        kwargs = {**kwargs, "model": model}
        model = kwargs.pop("model", None) or self.actor.DEFAULT_MODEL
        response = self.actor.predict(message, context=memory, model=model, **kwargs)
        return self.postprocess_response(response, message, memory, **kwargs)

    def act_and_stream(
        self, instruction: str, image: Image = None, context: list | str | Image | Message = None, model=None, **kwargs
    ) -> Generator[str, None, str]:
        """Responds to the given instruction, image, and context and streams the response."""
        message, memory = self.prepare_inputs(instruction, image, context)
        kwargs = {**kwargs, "model": model}
        model = kwargs.pop("model", None) or self.actor.DEFAULT_MODEL
        response = ""
        for chunk in self.actor.stream(message, memory, model=model, **kwargs):
            response += chunk
            yield chunk
        return self.postprocess_response(response, message, memory, **kwargs)

    async def async_act_and_stream(
        self, instruction: str, image: Image = None, context: list | str | Image | Message = None, model=None, **kwargs
    ) -> AsyncGenerator[str, None]:
        message, memory = self.prepare_inputs(instruction, image, context)
        kwargs = {**kwargs, "model": model}
        model = kwargs.pop("model", None) or self.actor.DEFAULT_MODEL
        response = ""
        async for chunk in self.actor.astream(message, context=memory, model=model, **kwargs):
            response += chunk
            yield chunk
        self.postprocess_response(response, message, memory, **kwargs)
        return

__init__(model_src='openai', context=None, api_key=os.getenv('OPENAI_API_KEY'), model_kwargs=None, recorder='omit', recorder_kwargs=None)

Agent with memory, asynchronous remote acting, and automatic dataset recording.

Additionally supports asynchronous remote inference, supporting multiple platforms including OpenAI, Anthropic, vLLM, Gradio, and Ollama.

Parameters:

Name Type Description Default
model_src Literal['openai', 'anthropic', 'gradio', 'ollama', 'http'] | AnyUrl | FilePath | DirectoryPath | NewPath

The source of the model to use for inference. It can be one of the following: - "openai": Use the OpenAI backend (or vLLM). - "anthropic": Use the Anthropic backend. - "gradio": Use the Gradio backend. - "ollama": Use the Ollama backend. - "http": Use a custom HTTP API backend. - AnyUrl: A URL pointing to the model source. - FilePath: A local path to the model's weights. - DirectoryPath: A local directory containing the model's weights. - NewPath: A new path object representing the model source.

'openai'
context Union[list, Image, str, Message]

The starting context to use for the conversation. It can be a list of messages, an image, a string, or a message. If a string is provided, it will be interpreted as a user message. Defaults to None.

None
api_key str

The API key to use for the remote actor (if applicable). Defaults to the value of the OPENAI_API_KEY environment variable.

getenv('OPENAI_API_KEY')
model_kwargs dict

Additional keyword arguments to pass to the model source. Can be overidden at act time. See the documentation of the specific backend for more details. Defaults to None.

None
recorder Union[str, Literal['default', 'omit']]

The recorder configuration or name or action. Defaults to "omit".

'omit'
recorder_kwargs dict

Additional keyword arguments to pass to the recorder. Defaults to None.

None
Source code in mbodied/agents/language/language_agent.py
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
def __init__(
    self,
    model_src: Literal["openai", "anthropic", "gradio", "ollama", "http"]
    | AnyUrl
    | FilePath
    | DirectoryPath
    | NewPath = "openai",
    context: list | Image | str | Message = None,
    api_key: str | None = os.getenv("OPENAI_API_KEY"),
    model_kwargs: dict = None,
    recorder: Literal["default", "omit"] | str = "omit",
    recorder_kwargs: dict = None,
) -> None:
    """Agent with memory,  asynchronous remote acting, and automatic dataset recording.

     Additionally supports asynchronous remote inference,
        supporting multiple platforms including OpenAI, Anthropic, vLLM, Gradio, and Ollama.

    Args:
        model_src: The source of the model to use for inference. It can be one of the following:
            - "openai": Use the OpenAI backend (or vLLM).
            - "anthropic": Use the Anthropic backend.
            - "gradio": Use the Gradio backend.
            - "ollama": Use the Ollama backend.
            - "http": Use a custom HTTP API backend.
            - AnyUrl: A URL pointing to the model source.
            - FilePath: A local path to the model's weights.
            - DirectoryPath: A local directory containing the model's weights.
            - NewPath: A new path object representing the model source.
        context (Union[list, Image, str, Message], optional): The starting context to use for the conversation.
                It can be a list of messages, an image, a string, or a message.
                If a string is provided, it will be interpreted as a user message. Defaults to None.
        api_key (str, optional): The API key to use for the remote actor (if applicable).
             Defaults to the value of the OPENAI_API_KEY environment variable.
        model_kwargs (dict, optional): Additional keyword arguments to pass to the model source. Can be overidden at act time.
            See the documentation of the specific backend for more details. Defaults to None.
        recorder (Union[str, Literal["default", "omit"]], optional):
            The recorder configuration or name or action. Defaults to "omit".
        recorder_kwargs (dict, optional): Additional keyword arguments to pass to the recorder. Defaults to None.
    """
    if not LanguageAgent._art_printed:
        print("Welcome to")  # noqa: T201
        print(text2art("mbodi"))  # noqa: T201
        print("A platform for intelligent embodied agents.\n\n")  # noqa: T201
        LanguageAgent._art_printed = True
    self.reminders: List[Reminder] = []
    print(f"Initializing language agent for robot using : {model_src}")  # noqa: T201

    super().__init__(
        recorder=recorder,
        recorder_kwargs=recorder_kwargs,
        model_src=model_src,
        model_kwargs=model_kwargs,
        api_key=api_key,
    )

    self.context = make_context_list(context)

act(instruction, image=None, context=None, model=None, **kwargs)

Responds to the given instruction, image, and context.

Uses the given instruction and image to perform an action.

Parameters:

Name Type Description Default
instruction str

The instruction to be processed.

required
image Image

The image to be processed.

None
context list | str | Image | Message

Additonal context to include in the response. If context is a list of messages, it will be interpreted as new memory.

None
model

The model to use for the response.

None
**kwargs

Additional keyword arguments.

{}

Returns:

Name Type Description
str str

The response to the instruction.

Examples:

>>> agent.act("Hello, world!", Image("scene.jpeg"))
"Hello! What can I do for you today?"
>>> agent.act("Return a plan to pickup the object as a python list.", Image("scene.jpeg"))
"['Move left arm to the object', 'Move right arm to the object']"
Source code in mbodied/agents/language/language_agent.py
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
def act(
    self,
    instruction: str,
    image: Image = None,
    context: list | str | Image | Message = None,
    model=None,
    **kwargs,
) -> str:
    """Responds to the given instruction, image, and context.

    Uses the given instruction and image to perform an action.

    Args:
        instruction: The instruction to be processed.
        image: The image to be processed.
        context: Additonal context to include in the response. If context is a list of messages, it will be interpreted
            as new memory.
        model: The model to use for the response.
        **kwargs: Additional keyword arguments.

    Returns:
        str: The response to the instruction.

    Examples:
        >>> agent.act("Hello, world!", Image("scene.jpeg"))
        "Hello! What can I do for you today?"
        >>> agent.act("Return a plan to pickup the object as a python list.", Image("scene.jpeg"))
        "['Move left arm to the object', 'Move right arm to the object']"
    """
    message, memory = self.prepare_inputs(instruction, image, context)
    kwargs = {**kwargs, "model": model}
    model = kwargs.pop("model", None) or self.actor.DEFAULT_MODEL
    response = self.actor.predict(message, context=memory, model=model, **kwargs)
    return self.postprocess_response(response, message, memory, **kwargs)

act_and_parse(instruction, image=None, parse_target=Sample, context=None, model=None, max_retries=1, record=False, **kwargs)

Responds to the given instruction, image, and context and parses the response into a Sample object.

Parameters:

Name Type Description Default
instruction str

The instruction to be processed.

required
image Image

The image to be processed.

None
parse_target type[Sample]

The target type to parse the response into.

Sample
context list | str | Image | Message

Additonal context to include in the response. If context is a list of messages, it will be interpreted as new memory.

None
model

The model to use for the response.

None
max_retries int

The maximum number of retries to parse the response.

1
record bool

Whether to record the interaction for training.

False
**kwargs

Additional keyword arguments.

{}
Source code in mbodied/agents/language/language_agent.py
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
def act_and_parse(
    self,
    instruction: str,
    image: Image = None,
    parse_target: type[Sample] = Sample,
    context: list | str | Image | Message = None,
    model=None,
    max_retries: int = 1,
    record: bool = False,
    **kwargs,
) -> Sample:
    """Responds to the given instruction, image, and context and parses the response into a Sample object.

    Args:
        instruction: The instruction to be processed.
        image: The image to be processed.
        parse_target: The target type to parse the response into.
        context: Additonal context to include in the response. If context is a list of messages, it will be interpreted
            as new memory.
        model: The model to use for the response.
        max_retries: The maximum number of retries to parse the response.
        record: Whether to record the interaction for training.
        **kwargs: Additional keyword arguments.
    """
    original_instruction = instruction
    kwargs = {**kwargs, "model": model}
    model = kwargs.pop("model", None) or self.actor.DEFAULT_MODEL
    for attempt in range(max_retries + 1):
        if record:
            response = self.act_and_record(instruction, image, context, model=model, **kwargs)
        else:
            response = self.act(instruction, image, context, model=model, **kwargs)
        response = response[response.find("{") : response.rfind("}") + 1]
        try:
            return parse_target.model_validate_json(response)
        except Exception as e:
            if attempt == max_retries:
                raise ValueError(f"Failed to parse response after {max_retries + 1} attempts") from e
            error = f"Error parsing response: {e}"
            instruction = original_instruction + f". Avoid the following error: {error}"
            self.forget(last_n=2)
            logging.warning(f"\nReceived response: {response}.\n Retrying with error message: {instruction}")
    raise ValueError(f"Failed to parse response after {max_retries + 1} attempts")

act_and_stream(instruction, image=None, context=None, model=None, **kwargs)

Responds to the given instruction, image, and context and streams the response.

Source code in mbodied/agents/language/language_agent.py
389
390
391
392
393
394
395
396
397
398
399
400
def act_and_stream(
    self, instruction: str, image: Image = None, context: list | str | Image | Message = None, model=None, **kwargs
) -> Generator[str, None, str]:
    """Responds to the given instruction, image, and context and streams the response."""
    message, memory = self.prepare_inputs(instruction, image, context)
    kwargs = {**kwargs, "model": model}
    model = kwargs.pop("model", None) or self.actor.DEFAULT_MODEL
    response = ""
    for chunk in self.actor.stream(message, memory, model=model, **kwargs):
        response += chunk
        yield chunk
    return self.postprocess_response(response, message, memory, **kwargs)

async_act_and_parse(instruction, image=None, parse_target=Sample, context=None, model=None, max_retries=1, **kwargs) async

Responds to the given instruction, image, and context asynchronously and parses the response into a Sample object.

Source code in mbodied/agents/language/language_agent.py
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
async def async_act_and_parse(
    self,
    instruction: str,
    image: Image = None,
    parse_target: Sample = Sample,
    context: list | str | Image | Message = None,
    model=None,
    max_retries: int = 1,
    **kwargs,
) -> Sample:
    """Responds to the given instruction, image, and context asynchronously and parses the response into a Sample object."""
    return await asyncio.to_thread(
        self.act_and_parse,
        instruction,
        image,
        parse_target,
        context,
        model=model,
        max_retries=max_retries,
        **kwargs,
    )

forget(everything=False, last_n=-1)

Forget the last n messages in the context.

Parameters:

Name Type Description Default
everything

Whether to forget everything.

False
last_n int

The number of messages to forget.

-1
Source code in mbodied/agents/language/language_agent.py
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
def forget(self, everything=False, last_n: int = -1) -> List[Message]:
    """Forget the last n messages in the context.

    Args:
        everything: Whether to forget everything.
        last_n: The number of messages to forget.
    """
    if everything:
        context = self.context
        self.context = []
        return context
    forgotten = []
    for _ in range(last_n):
        last = self.forget_last()
        if last:
            forgotten.append(last)
    return forgotten

forget_after(first_n)

Forget after the first n messages in the context.

Parameters:

Name Type Description Default
first_n int

The number of messages to keep.

required
Source code in mbodied/agents/language/language_agent.py
209
210
211
212
213
214
215
def forget_after(self, first_n: int) -> None:
    """Forget after the first n messages in the context.

    Args:
        first_n: The number of messages to keep.
    """
    self.context = self.context[:first_n]

forget_last()

Forget the last message in the context.

Source code in mbodied/agents/language/language_agent.py
202
203
204
205
206
207
def forget_last(self) -> Message:
    """Forget the last message in the context."""
    try:
        return self.context.pop(-1)
    except IndexError:
        logging.warning("No message to forget in the context")

history()

Return the conversation history.

Source code in mbodied/agents/language/language_agent.py
235
236
237
def history(self) -> List[Message]:
    """Return the conversation history."""
    return self.context

postprocess_response(response, message, memory, **kwargs)

Postprocess the response.

Source code in mbodied/agents/language/language_agent.py
348
349
350
351
352
def postprocess_response(self, response: str, message: Message, memory: list[Message], **kwargs) -> str:
    """Postprocess the response."""
    self.context.append(message)
    self.context.append(Message(role="assistant", content=response))
    return response

prepare_inputs(instruction, image=None, context=None)

Helper method to prepare the inputs for the agent.

Parameters:

Name Type Description Default
instruction str

The instruction to be processed.

required
image Image

The image to be processed.

None
context list | str | Image | Message

Additonal context to include in the response. If context is a list of messages, it will be interpreted as new memory.

None
Source code in mbodied/agents/language/language_agent.py
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
def prepare_inputs(
    self, instruction: str, image: Image = None, context: list | str | Image | Message = None
) -> tuple[Message, list[Message]]:
    """Helper method to prepare the inputs for the agent.

    Args:
        instruction: The instruction to be processed.
        image: The image to be processed.
        context: Additonal context to include in the response. If context is a list of messages, it will be interpreted
            as new memory.
    """
    self._check_for_reminders()
    memory = self.context
    if context and all(isinstance(c, Message) for c in context):
        memory += context
        context = []

    # Prepare the inputs
    inputs = [instruction]
    if image is not None:
        inputs.append(image)
    if context:
        inputs.extend(context if isinstance(context, list) else [context])
    message = Message(role="user", content=inputs)

    return message, memory

remind_every(prompt, n)

Remind the agent of the prompt every n messages.

Parameters:

Name Type Description Default
prompt str | Image | Message

The prompt to remind the agent of.

required
n int

The frequency of the reminder.

required
Source code in mbodied/agents/language/language_agent.py
239
240
241
242
243
244
245
246
247
def remind_every(self, prompt: str | Image | Message, n: int) -> None:
    """Remind the agent of the prompt every n messages.

    Args:
        prompt: The prompt to remind the agent of.
        n: The frequency of the reminder.
    """
    message = Message([prompt]) if not isinstance(prompt, Message) else prompt
    self.reminders.append(Reminder(message, n))

Reminder dataclass

A reminder to show the agent a prompt every n messages.

Source code in mbodied/agents/language/language_agent.py
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
@dataclass
class Reminder:
    """A reminder to show the agent a prompt every n messages."""

    prompt: str | Image | Message
    n: int

    def __iter__(self):
        yield self.prompt
        yield self.n

    def __getitem__(self, key):
        if key == 0:
            return self.prompt
        elif key == 1:
            return self.n
        else:
            raise IndexError("Invalid index")

make_context_list(context)

Convert the context to a list of messages.

Source code in mbodied/agents/language/language_agent.py
88
89
90
91
92
93
94
95
96
def make_context_list(context: list[str | Image | Message] | Image | str | Message | None) -> List[Message]:
    """Convert the context to a list of messages."""
    if isinstance(context, list):
        return [Message(content=c) if not isinstance(c, Message) else c for c in context]
    if isinstance(context, Message):
        return [context]
    if isinstance(context, str | Image):
        return [Message(role="user", content=[context]), Message(role="assistant", content="Understood.")]
    return []